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The controllability property of the unitary propagator of an N -level quantum mechanical system
subject to a single control field is described using the structure theory of semisimple Lie algebras.
Sufficient conditions are provided for the vector fields in a generic configuration as well as in a few
degenerate cases.

I. INTRODUCTION

The question of controllability for a finite level quantum system, see Ref. [Dahlen 1996, Schirmer 2001a,
Turinici 2001], is studied in this paper by analyzing the structure of the semisimple Lie algebra of its time
evolution operator. The system dynamics is determined by its internal Hamiltonian and by an external
Hamiltonian describing the interaction with a control field. Of the several different aspects of controllability
that can be defined for a closed system of such type (overviewed in Ref. [Albertini 2001, Schirmer 2001b]),
we consider here the more direct and important in practical applications, namely the controllability of
its unitary propagator which, in control terms, is governed by a bilinear system with drift and a single
control input and evolves on SU(N). For a compact semisimple Lie group like SU(N), the testing of global
controllability is the simplest of all noncommutative Lie groups. In fact, compactness implies that the
accessibility property collapses into (global) controllability and semisimplicity implies that almost all pairs
of vector fields span the corresponding Lie algebra. The first property means that purely algebraic tools, like
the Lie algebra rank condition normally used in control theory provides necessary and sufficient conditions
for controllability, while the second property affirms that controllability is generically verified even in the
single control case. The main scope of this paper is to give the interpretation of these properties in terms of
structure theory of semisimple Lie algebras, see Ref. [Cornwell 1997, Gilmore 1974, Sattinger 1986], and to
provide alternative tests to the exhaustive computation of commutators that the Lie algebra rank condition
requires. So genericity is interpreted in terms of regularity of the roots of the Lie algebra su(N) and another
property, regularity along the control vector field, immediately follows. Replacing the Lie algebra rank
condition means seeking for alternative conditions that guarantee the maximal nonintegrability of the pair
of vector fields. The main tool we use, together with the regularity of the roots, is the connectivity of the
graph of the control vector field. Both properties were classically used to analyze controllability of vector
fields on semisimple Lie algebras (especially the noncompact ones, see Ref. [Jurdjevic 1981, Gauthier 1982,
El Assoudi 1995, Silva Leite 1988]). For the same type of problem as ours, the properties of the graph were
recently used also in [Turinici 2001]. The conditions we obtain, based only on the a priori knowledge of
the two vector fields, are only sufficient but they allow us to avoid any computation of Lie brackets. From
the generic case, physically representing a quantum system with all different transition values between its
(nondegenerate) energy levels, these tools carry on to the singular case, where some of these levels might be
equispaced.

The paper is organized as follows: the structure theory of semisimple Lie algebras is recalled in Section
II and it is applied to the quantum system in Section III, where all the needed control concepts are given.
The sufficient conditions for a generic pair of vector fields are given in Section IV, while in Section V the
simplest among the singular cases are analyzed.
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II. ROOT SPACE DECOMPOSITION FOR su(N)

Consider the classical Lie algebra AN−1, complexification of su(N) according to Cartan’s notation. The
subindex N − 1 is the rank of the Cartan subalgebra h of AN−1 i.e. the maximal abelian subalgebra such
that the endomorphism adH of AN−1 is semisimple for all H ∈ h.

Definition 1 An element H ∈ AN−1 is said regular if the multiplicity of the zero eigenvalue of adH is equal
to the rank of AN−1 i.e. dim(ker adH) = rankAN−1 = N − 1.

The set of regular elements H is open and dense in AN−1. Choose one such H and consider the corresponding
Cartan subalgebra h = g0(H) = {B ∈ AN−1 | adHB = 0}.

The roots of AN−1 are the functionals α on h such that, for H ∈ h, adHB = α(H)B, B ∈ AN−1, i.e. α
give the eigenvalues of adH for each choice of H. Denote by ∆ the set of nonzero roots of AN−1 with respect
to h, by ∆+ the subset of positive roots with respect to the lexicographic order on the dual of h, and by Φ
the set of fundamental roots i.e. the set of positive roots that cannot be written as sums of two other positive
roots.

We need a stronger version of the regularity property, see Ref. [Jurdjevic 1996], p. 187.

Definition 2 A regular H ∈ AN−1 is said strongly regular if all nonzero eigenvalues α(H) are distinct and
have multiplicity 1.

Also the set of strongly regular elements is open and dense in AN−1. For all strongly regular H, the
decomposition induced by the roots has the same structure: AN−1 can be written as a direct sum of root
spaces gα = {B ∈ AN−1 | adHB = α(H)B}:

AN−1 = h +
⊕
α∈∆

gα

Each gα is invariant for adH and satisfies [gα, gβ ] = gα+β where gα+β = 0 if α + β /∈ ∆. Furthermore,
calling K the Killing form, i.e. the bilinear form K : AN−1 × AN−1 → R , X, Y 7→ trace(adXadY ), the
restriction of K to h is nondegenerate and for each root α ∈ ∆ there exists a unique Hα ∈ h such that
α(H) = K(H, Hα), so that α(Hα) = K(Hα, Hα) 6= 0. If α ∈ ∆, so does −α and for X ∈ gα and Y ∈ g−α
[X, Y ] = K(X, Y )Hα. Therefore, by normalizing, we can choose root vectors Eα ∈ gα such that

[H, Eα] = α(H)Eα for H ∈ h

[Eα, E−α] = Hα

[Eα, Eβ ] =

{
0 if α+ β /∈ ∆
NαβEα+β if α+ β ∈ ∆

(1)

where Nαβ are real constants and Nαβ = −N(−α)(−β) From (1), one obtains a Weyl basis for AN−1:

{Hα , α ∈ Φ} ∪ {Eα , α ∈ ∆} (2)

Since {adH | H ∈ h} is a commuting family of semisimple operators, there is a basis of AN−1 in which these
operators are simultaneously diagonalizable. Fix H̄ ∈ h to be one such N ×N diagonal traceless matrices,
H̄ = diag(λ1, . . . , λN ) such that

∑N
i=1 λi = 0 where the λi are assumed to be ordered: λ1 > . . . > λN . Let

Eij be the matrix with 1 in the (ij) slot and 0 elsewhere. Since adH̄Eij = (λi− λj)Eij , the Eij are the root
vectors and the roots are the functionals αij such that αij(H̄) = λi − λj . The sum αij + αkl is a root if
and only if j = k or i = l (if both, then it is the zero root). In fact, from EijEkl = δjkEil where δij is the
Kroneker delta, [Eij , Ekl] = δjkEil − δliEkj , i.e.

[Eij , Ekl] =


0 if j 6= k and i 6= l

Eil if j = k

−Ekj if i = l

Eii − Ejj if j = k and i = l

(3)
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The roots αij are real and such that if αij is a root so is −αij . H̄ is a strongly regular element if αij 6= αkl,
for indexes i, j, k, l such that (i, j) 6= (k, l), i 6= j and k 6= l. Thus H̄ is strongly regular if and only if
λi − λj 6= λk − λl. The fundamental roots are α12, α23, . . . , αN−1,N and a basis of AN−1 corresponding to
(2) is given by

{Hi = Eii − Ei+1,i+1 , i = 1, . . . , N − 1} ∪ {Eij , i, j = 1, . . . , N , i 6= j} (4)

su(N) is the compact real form of AN−1 since it corresponds to a negative definite Killing form. The basis
of su(N) corresponding to (2) is

{iHα , α ∈ Φ} ∪
{
Xα = Eα − E−α , α ∈ ∆+

}
∪
{
Yα = i(Eα + E−α) , α ∈ ∆+

}
(5)

or, after diagonalization of the Cartan subalgebra

{iHi , i = 1, . . . , N − 1} ∪ {Xij = Eij − Eji , 1 6 i < j 6 N} ∪ {Yij = i(Eij + Eji) , 1 6 i < j 6 N} (6)

Indeed, this skew-Hermitian basis forms a real Lie algebra as all the structure constants are real:

[Xij , Xkl] = δjkXil + δilXjk + δjlXki + δikXlj

[Yij , Ykl] = δjkXli + δilXkj + δjlXki + δikXlj

[Xij , Ykl] = δjkYil − δilYkj + δjlYik − δikYlj
[iHi, Xjk] = δijYik − δikYji − δi+1,jYi+1,k + δk,i+1Yj,i+1

[iHi, Yjk] = δijXki + δikXji + δi+1,jXi+1,k + δk,i+1Xi+1,j

(7)

The basis (5) corresponds to the direct sum, orthogonal with respect to the Killing form:

su(N) =
⊕
α∈Φ

iRHα

⊕
α∈∆+

RXα

⊕
α∈∆+

RYα (8)

If A is in the Cartan subalgebra of su(N), then A = iH with H ∈ h. Since the values of the roots at H,
α(H), are real, α(A) will be imaginary and, from (7),

adAXα = α(H)Yα
adAYα = −α(H)Xα

(9)

thus the vector space fα = RXα + RYα is invariant for adA. Furthermore, the vector spaces corresponding
to the fundamental roots are enough to generate all the α-strings and therefore

Lemma 1
{⊕

α∈Φ fα
}
L.A.

= su(N)

Proof Similarly to (3), in the basis (6) we obtain (using (7)):

[fij , fkl] =


∅ if j 6= k and i 6= l

fil if j = k

fkj if i = l

∈ h if j = k and i = l

(10)

Thus from
{⊕

α∈Φ fα
}

it is possible to generate
{⊕

α∈∆+ fα
}

. Moreover, [Xi,i+1, Yi,i+1] = 2iHi, i =
1, . . . , N − 1, therefore also ih is generated.

On the other hand, a proper subset of fundamental roots cannot generate su(N).

Lemma 2 If Φ′ ( Φ then
{⊕

α∈Φ′ fα
}
L.A.

( su(N)

Proof Trivial since by its very definition a fundamental root cannot be written as a sum of other positive
roots, therefore if ᾱ is a missing fundamental root, @ α, β ∈ Φ such that [Eα, Eβ ] = Nα, βEᾱ. Thus Xᾱ and
Yᾱ are not spanned by any bracket.
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III. QUANTUM CONTROL SYSTEM

Consider a finite level quantum system described by a state |ψ〉 evolving according to the time dependent
Schrödinger equation

i~|ψ̇(t)〉 =
(
Ĥ0 + u(t)Ĥ1

)
|ψ(t)〉 (11)

where the traceless Hermitian matrices Ĥ0 and Ĥ1 are respectively the internal (or free) Hamiltonian and
the external Hamiltonian, this last representing the interaction of the system with a single control field
u(t). In the N -level approximation, the state |ψ〉 is expanded with respect to a basis of N orthonormal
eigenstates |ϕi〉: |ψ〉 =

∑N
i=1 ci|ϕi〉 where the ci are complex coefficients that satisfy the normalization

condition
∑N
i=1 |ci|2 = 1. If we write the initial condition of (11) as |ψ0〉 =

∑N
i=1 c0i|ϕi〉, then also the vector

c = [c1 . . . cN ]T satisfies a differential equation similar to (11):

i~ċ(t) =
(
H̃0 + u(t)H̃1

)
c(t)

c(0) = c0
(12)

where now the traceless Hermitian matrix H̃0 is diagonal. The real coefficients Ei, E1 ≤ . . . ≤ EN , appearing
along the diagonal of H̃0 are eigenvalues, H̃0|ϕi〉 = Ei|ϕi〉, and represent the energy levels of the system. If
Ei = Ej for some i 6= j, then the system is said degenerate. If, instead, some of the levels are equispaced,
Ei − Ej = Ek − El for (i, j) 6= (k, l), i 6= j, k 6= l, then the system is said to have degenerate transitions
(or resonances). The solution of (12) is c(t) = X(t)c(0) with the unitary matrix X(t) representing the time
evolution operator. If we use atomic units (~ = 1), then instead of (12) we can study the right invariant
bilinear control system evolving on the Lie group SU(N) and characterized by the skew-Hermitian vector
fields A = −iH̃0 and B = −iH̃1:

Ẋ(t) = (A+ u(t)B)X(t) X(t) ∈ SU(N), A, B ∈ su(N)
X(0) = I

(13)

The system (13) is said (globally) controllable if the reachable set

R{A,B} =
{
X̄ ∈ SU(N) | there exists an admissible input u(·) such that the integral

curve of (13) satisfies X(0) = I, X(t) = X̄ for some t > 0}

is all of the Lie group: R{A,B} = SU(N). Given (any) A, B ∈ su(N), call {A, B}L.A. the Lie algebra
generated by A and B with respect to the Lie bracket. The literature on the subject of quantum control,
see Ref. [D’Alessandro 2001, Ramakrishna 1995, Albertini 2001], has relied essentially on the condition of
the following Theorem (originally due to [Jurdjevic 1972]):

Theorem 1 The system (13) is controllable if and only if {A, B}L.A. = su(N).

Theorem 1 is a consequence of the following Lemma, which affirms that subsemigroups of compact groups
are always subgroups:

Lemma 3 (Lemma 1, Ch.6 of [Jurdjevic 1996]) For the compact semisimple Lie group SU(N)

cl (exp(tA, t < 0)) ⊂ cl (exp(tA, t > 0)) ∀ A ∈ su(N)

where exp : su(N)→ SU(N) is the Lie group exponential map (and cl means closure).

Consequently, the drift vector field A of (13) is not hampering controllability on the large and thus Theorem
1 follows [1]. Furthermore, the semisimple character of su(N) implies the following:

Lemma 4 (Theorem 12, Ch.6 of [Jurdjevic 1996]) The set of pairs A,B ∈ su(N) such that {A, B}L.A. =
su(N) is open and dense in su(N).

Putting together Theorem 1 and Lemma 4 then we have:
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Corollary 1 The system (13) is controllable for almost all pairs A, B ∈ su(N).

In spite of the generic result above, there is still some interest in the controllability problem, especially

• characterize the algebraic set in which controllability may fail

• determining alternative procedures for testing controllability, other than exhaustive computation of
Lie brackets.

• find sufficient conditions for controllability based on the a priori knowledge of the vector fields A and
B.

This paper is dedicated to the last two items of the list.

A. Roots and graphs

B is expressed in terms of the components of the su(N) basis (5) as:

B = B0 +
∑

α∈Γ+⊆∆+

(
b<αXα + b=αYα

)
(14)

where B0 ∈ ih, b<α and b=α are real and Γ+ ⊆ ∆+ is the subset of roots “touched” by B.
In this case, it is possible to use the connectivity properties of the graph of B to draw conclusions about

controllability in the same spirit as it is done in [Gauthier 1982, Silva Leite 1988] for normal (or split) real
forms and, more recently, in [Turinici 2001] for the same quantum control problem. Consider the graph GB
associated to a square matrix B = [bij ], i.e. the pair GB = (NB , CB) where NB represents a set of N ordered
nodes NB = {1, . . . , n} and CB the set of oriented arcs joining the nodes: CB = {(i, j) | bij 6= 0}. The graph
GB is said strongly connected if for all pairs of nodes in NB there exists an oriented path in CB connecting
them. GB is strongly connected if and only if B is permutation-irreducible (P-irreducible) [2], i.e. there
exists no permutation matrix P such that

P−1BP =
[
B1 ∗
0 B2

]
A square matrix is P -irreducible if and only if its graph does not contain any strongly disconnected subgraph.
As long as we consider matrices B that are Hermitian or skew-Hermitian, the adjective “strong” (referring
to the path being oriented) is irrelevant since bij 6= 0 if and only if bji 6= 0.

Remark 1 For B Hermitian or skew-Hermitian, GB connected ⇐⇒ GB strongly connected.

This is not anymore true if B belongs to a noncompact real form. Working with the complexification AN−1

and considering the graphs associated with the elements Eα, α ∈ ∆+, of the Weyl basis (4), a unique GEα
is associated to each positive root. GEα are called elementary root graphs. If bα = b<α + ib=α , rewriting B as

B = B0 +B1 = B0 +
∑
α∈Γ+

(bαEα − b∗αE−α) (15)

where ∗ is complex conjugate, then the (positive) root graph of B is G+
B =

⋃
α∈Γ+ GEα and GB−B0 is “twice”

G+
B .
For the quantum system on su(N), the roots admit the interpretation of transitions between energy levels

of the system. According to our definitions, λi = −Ei and the roots are αij = Ej − Ei (i < j ⇒ αij > 0).
The concepts of regular and strongly regular roots correspond to those of degenerate system and of system

with degenerate transitions in the following way:

(i) if a system is degenerate then it has nonregular roots;

(ii) if a system is nondegenerate but has degenerate transitions then it has regular but not all strongly
regular roots;
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(iii) if a system is nondegenerate and has no degenerate transitions then it has only strongly regular roots.

In the basis (6), bα = bij , 1 6 i < j 6 N and B0 is simply the diagonal

B0 =
N∑
k=1

bkkEkk =
N−1∑
k=1

( k∑
j=1

ibjj
)
(iHK) (16)

since B0 ∈ su(N) has to be traceless. The bjj (which must be purely imaginary) correspond to loops on GB ,
i.e. to arcs beginning and ending on the same node. Thus they are irrelevant for the connectivity property.
In the basis (6), A and B are:

A =
N−1∑
k=1

( k∑
j=1

Ej
)
(iHk) (17)

B = B0 +
∑

(i,j)∈C+
B

(
b<ijXij + b=ijYij

)
(18)

The following lemma is the adaptation to our situation of Theorem 2 and Corollary 2 of [Silva Leite 1988].

Lemma 5 B is P -irreducible ⇐⇒ {fα, α ∈ Γ+}L.A. = su(N)

Proof If B is P-irreducible, then B−B0 is P-irreducible and G+
B is connected. Therefore, every pair of nodes

(i, j), i 6= j, can be joined by a path made up of elementary root graphs belonging to G+
B , or, in terms of roots,

each positive root of AN−1, αij ∈ ∆+, can be written as a sum of the roots of Γ+: αij =
∑

(k,l)∈C+
B
λk,lαk,l

for positive rationals λkl. The situation is specular for negative roots. From the commutation relations (10),
for some vector spaces fki,li of indexes (ki, li) ∈ C+

B we have

[fk1,l1 , [fk2,l2 , . . . [fkm−1,lm−1 , fkm,lm ] . . .] = fi,j (19)

Then also the Cartan subalgebra can be generated, see (7), and the result follows. On the other direction,
{fα, α ∈ Γ+}L.A. = su(N) means that repeated brackets like (19) span all the subspaces fij , 1 6 i < j 6 N ,
and therefore touch all the roots αij ∈ ∆. But this is equivalent to GB connected.

Lemma 1 and Lemma 2 tell us that the condition of Lemma 5 is “minimally” satisfied by a set of funda-
mental roots, although due to the nonuniqueness of the selection of the fundamental roots, not all the α ∈ Φ
have to be in Γ+ for GB to be connected.

Corollary 2 If Φ ⊆ Γ+ then B is P -irreducible.

IV. SUFFICIENT CONDITIONS FOR CONTROLLABILITY IN THE GENERIC CASE

Considerations similar to those used in the controllability analysis of normal real forms of classical Lie
algebras (see [Jurdjevic 1981, Gauthier 1982, El Assoudi 1995, Silva Leite 1988]) can be employed for our
compact real form as well. In the case of free Hamiltonian of diagonal type, the connectivity property of the
graph of the forced term B can replace the Lie algebraic rank condition, see [Gauthier 1982].

Lemma 6 If A is diagonal, a necessary condition for controllability is that GB connected.

Proof If B is P -reducible, then there exist nontrivial invariant subspaces of su(N) that are simultaneously
A-invariant and B-invariant. Thus the system cannot be controllable.

In the case of GB disconnected, the quantum system is decomposable into noninteracting subsystems [3].
The equivalence between {A, B}L.A. = su(N) and GB connected is not exact: while GB connected is a

necessary condition for controllability, alone it is not a sufficient condition, but requires extra assumptions
to be made on the diagonal matrix A. The simplest case corresponds to the drift term A being strongly
regular and corresponds to all nondegenerate transitions.
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Theorem 2 Given A and B as in (17) and (18), assume that GB is connected. If A is strongly regular,
then the system (13) is controllable.

Proof Since adA is invariant on each fα, α ∈ ∆+, the level one bracket C = adA
∑
α∈Γ+

(
b<αXα + b=αYα

)
allows to reach

⊕
α∈Γ+ fα as bα = b<α + ib=α 6= 0 for all α ∈ Γ+. Using an argument similar to the proof

of Theorem 3 in [Silva Leite 1988], we compute as many “A-brackets” (like [A, B], [A, [AB] ], etc.) as the
number of roots in Γ+, say 2m (with m > N − 1). For simplicity of bookkeeping, it is convenient to number
roots α and coefficients bα cardinally from 1 to 2m: {α1, . . . , α2m} = Γ+, bα = bi, i = 1, . . . , 2m and Eα = Ei,
i = 1, . . . , 2m


adAB
ad2
AB
...

ad2m
A B

 =



α1b1 α2b2 . . . αmbm α1b
∗
1 . . . αmb

∗
m

α2
1b1 α2

2b2 . . . α2
mbm −α2

1b
∗
1 . . . −α2

mb
∗
m

α3
1b1 α3

2b2 . . . α3
mbm α3

1b
∗
1 . . . α3

mb
∗
m

...

...

α2m
1 b1 α2m

2 b2 . . . α2m
m bm −α2m

1 b∗1 . . . −α2m
m b∗m





E1

E2

...
Em
E−1

...
E−m


= M



E1

E2

...
Em
E−1

...
E−m


(20)

M can be written as

M = S1



α1 . . . αm α1 . . . αm
α3

1 . . . α3
m α3

1 . . . α3
m

α2m−1
1 . . . α2m−1

m α2m−1
1 . . . α2m−1

m

α2
1 . . . α2

m 0 . . . 0
α4

1 . . . α4
m 0 . . . 0

α2m
1 . . . α2m

m 0 . . . 0


S2



b1
. . .

bm
b∗1

. . .
b∗m


with

S1 =



1 −1
. . . . . .

1 −1
2

. . .
2


S2 =



1 0 0
0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

. . . . . .
1 0
0 1


Straightforward computations give the determinant of M :

detM = (−1)m+12m
m∏
i=1

αmi
∏

16i<j6m

(
α2
j − α2

i

)2 m∏
i=1

|bi|2 6= 0

Therefore {A, B}L.A. ⊇ {fα, α ∈ Γ+}L.A., and controllability follows from P -irreducibility of B (Lemma 5).

A weaker property than strong regularity is B-strong regularity, introduced in [Silva Leite 1988].

Definition 3 Given B as in (14), A is said B-strongly regular if the elements α(H̃0), α ∈ Γ+, are nonzero
and distinct.
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Unlike strong regularity, which requires all roots of ∆ to be nonnull and distinct when computed in A,
B-strong regularity requires the root decomposition determined by A to be strongly regular only along the
roots Γ+ entering into the decomposition of B: αij(H̃0) = Ej − Ei 6= 0 if bij 6= 0. Obviously, A strongly
regular means A is B-strongly regular for all B.

Theorem 2 is a particular case of the following:

Theorem 3 Given A and B as in (17) and (18), assume that GB is connected. If A is B-strongly regular,
then the system (13) is controllable.

Proof The only difference with Theorem 2 is that adA is invariant only on fα, α ∈ Γ+ (rather than ∆+).
However, Lemma 5 is true regardless of this assumption (as it is concerned with B alone) and, using the
same construction of the proof of Theorem 2, detM 6= 0 still holds true.

An alternative extension of Theorem 2 is mentioned in [Turinici 2001]. If Π+
A is the set of positive roots

α(H̃0) that are strongly regular for A, call Θ+
A = Γ+ ∩ Π+

A the subset of positive strongly regular roots of
Γ+ when computed in A and Ω+

A the corresponding complementary set in Γ+ (i.e. the set of non strongly
regular roots of Γ+): Ω+

A = Γ+
rΘ+

A. So B splits into B = Br +Bs with Br = B0 +
∑
α∈Θ+

A

(
b<αXα + b=αYα

)
,

the intersection of B with the strongly regular roots, and Bs =
∑
α∈Ω+

A

(
b<αXα + b=αYα

)
.

Theorem 4 Given A and B as in (17) and (18) assume that GB is connected. If GBr is connected, then the
system (13) is controllable.

Proof The pair A, Br is such that A is Br-strongly regular. If GBr is connected, Theorem 3 applies
to the pair (A, Br). We can use an argument similar to the proof of Theorem 2. If mr > N are the
strongly regular roots and ms the degenerate ones, instead of the ordering of the root vector used in (20)

E =
[
E1 . . . Em E−1 . . . E−m

]T
we can use a splitting corresponding to strongly regular and degenerate

roots E =
[
Er Es

]T
=
[
Er1 . . . E

r
mrE

r
−1 . . . E

r
−mr Es1 . . . E

s
msE

s
−1 . . . E

s
−ms

]T
. Then

adAB
ad2
AB
...

ad2mr
A B

 =


adABr
ad2
ABr
...

ad2mr
A Br

+


adABs
ad2
ABs
...

ad2mr
A Bs

 =
[
Mr 0

]
E +

[
0 Ms

]
E = MrE

r +MsE
s

where the 2mr × 2mr matrix Mr is nonsingular and Ms is a rectangular matrix of dimensions 2mr × 2ms.
Since detMr 6= 0, we have

Er = M−1
r


 adAB

...
ad2mr
A B

−MsE
s


i.e. the Lie algebra generated by A and B contains a complete set of generators. Thus the statement again
follows from Lemma 5 and the Bs part of B is not influencing the controllability property.

For controllability, it is sufficient that Θ+
A contains the fundamental roots, as in this case GBr is connected

by Corollary 2.

Corollary 3 If Φ ⊆ Θ+
A, then the system (13) is controllable.

Notice that the condition of Theorem 2 is the one traditionally used in the literature to show that a generic
pair of vector fields on compact semisimple Lie algebras are generating, see [Kuranishi 1951, Boothby 1975,
Bonnard 1980]. For this purpose, given A strongly regular, B is constructed such that adA is cyclic on⊕

α∈∆+ fα, for example by having bα 6= 0 ∀α ∈ ∆+. This means that
⊕

α∈∆+ fα can be spanned by
“A-brackets” and thus all su(N) is generated by adding the elements of the Cartan subalgebra (bracketing
according to the last row of (10)). However, here the method is not directly applicable because some of the bij
elements of B are allowed to be zero. In this case, from

⊕
α∈Γ+ fα, the missing subspaces must be reached

by means of “B-brackets” [C, B], [[C, B], B] etc. and then their span completed by single “A-brackets”
[A, [C, B] ], [A, [[C, B], B] ], etc.
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V. SUFFICIENT CONDITIONS FOR CONTROLLABILITY IN A FEW SINGULAR CASES

The use of “B-brackets” is the leit motif of all other sufficient conditions which are based on prop-
erties weaker than the strong regularity and B-strong regularity of the diagonal vector field A. These
conditions belong to the first two cases of the classification of Section III A and, from Corollary 3, they
correspond to at least a pair of fundamental roots being equal. If new diagonal terms can be provided to
compensate for the degenerate transitions, then controllability can be recovered. From (15), writing C as
C =

∑
Γ+ α(A) (bαEα + b∗αE−α), the level two bracket [C, B] is

D = [C, B] = [C, B0] + [C, B1]

=

[∑
Γ+

α(A)bαEα, B0

]
+

[∑
Γ+

α(A)b∗αE−α, B0

]

+

[∑
Γ+

α(A)bαEα,
∑
Γ+

bαEα

]
+

[∑
Γ+

α(A)b∗αE−α,
∑
Γ+

bαEα

]

−

[∑
Γ+

α(A)bαEα,
∑
Γ+

b∗αE−α

]
−

[∑
Γ+

α(A)b∗αE−α,
∑
Γ+

b∗αE−α

]
(21)

If B0 is nonnull and linearly independent from A, it constitutes the simplest candidate to provide the missing
fundamental roots. From (16), the fundamental roots at B0, α(B0), are equal to βi,i+1 = bii− bi+1,i+1 when
expressed in the basis (6). Restricting to the case (ii) of Section III A, i.e. assuming that the system is
nondegenerate but with possibly degenerate transitions, equivalent versions of Theorems 2 and 3 hold for
B0 and C instead of A and B.

Theorem 5 If A regular and GB connected, then either of the following conditions is sufficient for control-
lability of (13):

1. B0 is strongly regular

2. B0 is C-strongly regular

Proof A regular means Ei 6= Ej for i 6= j, i.e. αij 6= 0 ∀ 1 6 i < j 6 N . Then in case of GB
connected also GC is connected. Therefore, B0 strongly regular or C-strongly regular satisfy respectively
Theorems 2 and 3 for the pair (B0, C). Since B = B0 + B1 (not B0) is the available vector field, in order
to complete the proof one has to verify that the (B1, C) pair is not spoiling the maximal nonintegrability
property of (B0, C) i.e. A ⊕ {B0, C}L.A. = A ⊕ {B, C}L.A. = su(N) [4]. But this follows from eq. (21):

while [B0, C] ∈ {fα, α ∈ Γ+}, whenever Γ+
( ∆+, [B1, C] ∈

{
fα, α ∈ Γ̃+ ⊇ Γ+

}
because components along

E±α±β , α, β ∈ Γ+ are produced by the last four terms of (21) (see (1)). If Γ̃+
) Γ+, then [B0, C] and

[B1, C] are automatically linearly independent. If, instead, Γ̃+ = Γ+, then from (21) it has to be α+β ∈ Γ+

for all roots α, β ∈ Γ+ such that α + β is a root and αb∗αE−αbβEβ − βbβEβb∗αE−α = 0 for all α, β ∈ Γ+

such that α − β ∈ ∆, α − β 6∈ Γ. But the only case of roots α, β ∈ Γ+ with α − β ∈ ∆ and satisfying
(α− β)b∗αbβ [E−α, Eβ ] = 0 is the case of all equal (and nonnull since A regular) roots. Linear independence
of [B0, C] and [B1, C] then follows from the fact that [B1, C] has terms on the diagonal which are certainly
nonnull for the case of all equal roots (they are computed in detail below, see equations (22) and (23)), while
[B0, C] is off-diagonal. In both cases thus, the basis elements obtained from [B0, C], [B0, [B0, C] ], etc. are
not canceled by the remaining parts of the brackets [B1, C], [B0, [B1, C] ] + [B1, [B0, C] ] + [B1, [B1, C] ],
etc.

One can think of weakening further the hypothesis of Theorem 5 by combining together strongly regular
pieces from both A and B0. To this end, analogously to what was done for the diagonal matrix A, call
Θ+
B the set of positive strongly regular roots α(B0) of Γ+ and Cr the corresponding part of C: Cr =∑
Θ+
B
α(A) (bαEα + b∗αE−α).

Theorem 6 Assume A regular and GB connected. If GBr ∪ GCr is connected then the system (13) is con-
trollable.
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Proof In this case it is necessary to use both “A-brackets” for the pair [A, B] and “B-brackets” for [B0, C].
Since “A-brackets” and “B-brackets” yield independent new generators, the proof follows by combining the
arguments used in proving Theorem 4 and Theorem 5.

As last, we treat the case of Cartan subalgebras from level two brackets of A and B. Since C is off-diagonal,
the only useful bracket in this respect is [C, B]. By looking at the commutators for the Weyl basis (1), new
diagonal terms appear only on the 4th and 5th terms of the expression (21) for D. By isolating them

D0 = −2
∑
Γ+

α(A)|bα|2[Eα, E−α] = −2
∑
Γ+

α(A)|bα|2Hα

or, in terms of the basis (6)

D0 = −2
∑

(i, j)∈C+
B

αij(A)|bij |2 (Hi +Hi+1 + . . .+Hj−1)

Thus D = [C, B] = D0 +D1 with D0 diagonal and D1 off-diagonal. It is convenient to sum over ∆+ rather
than Γ+ (if (i, j) /∈ C+

B then bij = 0):

D0 = −2
N−1∑
i=1

N∑
j=i+1

αij(A)|bij |2 (Eii − Ejj)

= 2
N∑
k=1

(
k−1∑
i=1

αik|bik|2 −
N∑

i=k+1

αki|bki|2
)
Ekk =

N∑
k=1

dkEkk (22)

where it is intended that
∑k−1
i=1 αik|bik|2 = 0 if k = 1 and

∑N
i=k+1 αki|bki|2 = 0 if k = N . The diagonal

elements dk of D0 can be expressed in terms of the energy levels Ek of the quantum system (11) as

dk = 2Ek
(
|b1,k|2 + . . .+ |bk−1,k|2 + |bk,k+1|2 + . . .+ |bk,N |2

)
−

− 2
(
E1|b1,k|2 + . . .+ Ek−1|bk−1,k|2 + Ek+1|bk,k+1|2 + . . .+ EN |bk,N |2

)
(23)

from which it is straightforward to check that
∑N
k=1 dk = 0 (thus that D0 ∈ su(N)).

Now we can reformulated Theorem 5 with D0 replacing B0.

Theorem 7 If A regular and GB connected, then any of the following conditions is sufficient for controlla-
bility of (13):

1. D0 is strongly regular

2. D0 is B-strongly regular

3. D0 is C-strongly regular

Proof The proof is completely analogous to that of Theorem 5, with the extra simplification that now D1,
when 6= 0, is linearly independent from both B and C regardless of the regularity of the roots computed in
A and B respectively.

The practical situations in which Theorems 5-7 apply are when the system has resonant modes (which,
again, corresponds to the case (ii) in the classification of Section III A). The extreme case is when Ei+1−Ei =
const ∀ i = 1, . . . n− 1 (nondegenerate system with all equally spaced energy levels).

Often a case-by-case analysis provides less strict sufficient conditions than those discussed in this paper.
As an example, consider the completely harmonic system mentioned above. If bi, j = 0 for j 6= i± 1 (dipole
approximation) [5] and bi,i±1 = b=i,i±1, we are exactly in the situation described in [Fu 2001], Section 2.3. In
this case, all the fundamental roots are equal, αi, i+1 = µ, i = 1, . . . N − 1, B =

∑N−1
i=1 bi,i+1Yi,i+1 (B0 = 0)

and C = µ
∑N−1
i=1 bi,i+1Xi,i+1. Thus D = −2µ

∑N−1
i=1 b2i,i+1(iHi) and the “new fundamental roots” are

−2µ(b2i, i+1 − b2i+1, i+2), which are not necessarily distinct for i = 1, . . . , N − 1. Thus Theorem 7 needs not
be verified. For the same system, Theorem 3 of [Fu 2001] provides an alternative sufficient condition that is
weaker than any of the items of Theorem 7, obtained by making use of the special structure of the system
to compute a full set of generating brackets explicitly. The drawback of this method is that whenever the
structure of B or the values of the fundamental roots are modified, the algorithm needs to be redesigned.
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